Xinbo Fu | Read More ... | Stickers

PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales)


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales)"

Transcripción

1 PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) Prof.: MSc. Julio Rito Vargas A. I. Suponga que en una estación con un solo servidor llegan en promedio 45 clientes por hora, Se tiene capacidad para atender en promedio a 60 clientes por hora. Se sabe que los clientes esperan en promedio 3 en la cola. Se solicita: a) Tiempo promedio que un cliente pasa en el sistema. b) Número promedio de clientes en la cola. c) Número promedio de clientes en el Sistema en un momento dado. λ= 45 clientes/hora (media de llegada de los clientes)= 45/60 clientes/ µ= 60 clientes/hora (media de servicio a los clientes) = 60/60 clientes/= W q = 3 (tiempo promedio de espera de un cliente en la cola) a) Para calcular el tiempo promedio que un cliente pasa en el Sistema (W s). Lo podemos calcular a partir de W q y µ. W s = W q + 1 = = = 4 μ 1 Es decir en promedio un cliente pasa 4 en el Sistema: distribuidos así 3 pasa esperando en la cola + 1 en servicio. b) Para calcular el número de clientes en la cola (Lq), usaremos la fórmula siguiente: Lq= λ W q. L q = λ W q =0.75 clientes * 3 = 2.25 clientes. Es decir los cálculos nos muestran que en la cola puede haber más de dos clientes en la cola. c) Para calcular cual es el número de clientes en la cola (L s). Lo podemos hacer con la fórmula: L s= λ W s. L S = λ W S = 0.75 cliente 4 = 3 clientes Es decir en promedio hay tres clientes en el sistema, como se nos ha dicho que solo hay un servidor, sabemos que solo un cliente puede estar en servicio, por lo que los demás deben estar en la cola. Esto indica que hay dos clientes en espera.

2 II. Suponga un restaurante de comidas rápidas al cual llegan en promedio 100 clientes por hora. Se tiene capacidad para atender en promedio a 150 clientes por hora Se sabe que los clientes esperan en promedio 2 en la cola Calcule las medidas de desempeño del sistema a) Cuál es la probabilidad que el sistema este ocioso? b) Cuál es la probabilidad que un cliente llegue y tenga que esperar, porque el sistema está ocupado? c) Cuál es el número promedio de clientes en la cola? d) Cuál es la probabilidad que hayan 10 clientes en la cola? λ= 100 clientes/hora (media de llegada de los clientes)= 100/60 clientes/ µ= 150 clientes/hora (media de servicio a los clientes) = 150/60 clientes/= W q = 2 (tiempo promedio de espera de un cliente en la cola) a) Para conocer cuál es la probabilidad de que el sistema este ocioso, primero conoceremos, cual es la probabilidad que esté ocupado o factor de utilización del sistema. ρ = λ cliente/hora =100 = 0.66 = 66.7% este porcentaje representa tiempo μ 150 cliente/hora que el sistema está ocupado. Es decir (1- ρ) representa el tiempo ocioso del sistema, es decir = = 33.3% el sistema permanece ocioso. b) La probabilidad que un cliente llegue y tenga que esperar es suponer que estará como primer cliente en la cola. Usaremos la fórmula: P n = (1 λ μ ) (λ μ )n Para nuestro caso n=1 y la formula se convierte en: P 1 = (1 λ μ ) (λ μ )1 = ( )( )1 = ( )(0.667) = 0.222=22.2% Es decir existe un 22.2% de posibilidad que haya un cliente en la cola esperando ser atendido. c) Ahora requerimos calcular el número de clientes en la línea de espera. L q = λ W q =1.667 clientes * 2 = clientes. 4 clientes en la cola. Es decir existe la posibilidad de llegar a tener un promedio de 4 clientes en la línea de espera.

3 d) La probabilidad de que hayan 10 clientes en la cola, como hemos visto existe un promedio de tener hasta 4 clientes en la cola que hayan más de 4 las probabilidades serán muy pequeñas, para ese cálculo haremos uso de la fórmula que usamos en el inciso b de este mismo ejemplo. P 10 = (1 λ μ ) (λ μ )10 = ( )( )10 = ( )(0.667) 10 = =0.58% (lo cual es casi cero). Es decir es muy remoto o poco probable que pueda haber 10 clientes en la línea de espera. III. Un lavacarro puede atender un auto cada 5 y la tasa media de llegadas es de 9 autos por hora. Obtenga las medidas de desempeño de acuerdo con el modelo M/M/1. Además la probabilidad de tener 0 clientes en el sistema, la probabilidad de tener una cola de más de 3 clientes y la probabilidad de esperar más de 30 en la cola y en el sistema λ= 9 clientes/hora (media de servicio a los clientes) = 0.15 clientes/ µ= 0.2 clientes/ (media de llegada de los clientes) a) Vamos calcular el factor de desempeño del sistema calculando ρ. ρ = λ cliente/ =0.15 = 0.75 = 75%. El sistema está ocupado el 75% del μ 0.20 cliente/ tiempo. O sea pasa un 25% ocioso. Es decir la probabilidad de tener 0 clientes en el sistema es cuando el sistema está vacío y eso puede ocurrir con una probabilidad del 25%. Su cálculo puede hacerse directamente con la fórmula: P 0 = ((1 λ 0 μ ) (λ μ ) = ( ) = 0.25 = 25% 0.2 b) La probabilidad de tener una cola de más de 3 clientes P 0 = (1 λ μ ) (λ μ ) 0 = (0.25)(0.75) 2 = 0.25 P 1 = (1 λ μ ) (λ μ ) 1 = (0.25)(0.75) 1 = P 2 = (1 λ μ ) (λ μ ) 2 = (0.25)(0.75) 2 = P 3 = (1 λ μ ) (λ μ ) 3 = (0.25)(0.75) 3 =

4 La probabilidad que haya más de tres clientes en el Sistema, implica que debemos conocer la Probabilidad que haya cero, uno, dos y tres clientes. La diferencia con 1. Será la probabilidad que hayan más de tres. P(Ls>3)=1 (P 0 + P 1 + P 2 + P 3 )= 1- ( )= = c) La probabilidad de esperar más de 30 en la cola. Primero calcularemos el tiempo promedio que un cliente espera en la cola. W q = λ = 0.15 = 0.15 μ(μ λ) 0.2( ) 0.01 cliente tiene que esperar en la cola) =15 (es el tiempo promedio que un Ahora vamos a calcular tiempo (t) de espera sea mayor de 30. P(W q > t) = ρe μ(1 ρ)t Vamos aplicar esta ecuación para calcular dicha probabilidad. P(W q > 30) = ρe μ(1 ρ)t =(0.75) e 0.2(1 0.75)30 =(0.75)e -1,5 = (0.75)(0.2231)= =0.167=16.7% (COMO PUEDE VER LA PROBABILIDAD ES BAJA) d) La probabilidad de esperar más de 30 en el Sistema. P(W S > t) = e μ(1 ρ)t Vamos aplicar esta ecuación para calcular dicha probabilidad. P(W S > 30) = e μ(1 ρ)t = e 0.2(1 0.75)30 =e -1,5 = = =22.3% (COMO PUEDE VER LA PROBABILIDAD ES BAJA, pero es más alta que la probabilidad de que el tiempo promedio que un cliente espere más de 30 en la cola). IV. Un promedio de 10 automóviles por hora llegan a un cajero con un solo servidor que proporciona servicio sin que uno descienda del automóvil. Suponga que el tiempo de servicio promedio por cada cliente es 4, y que tanto los tiempos entre llegadas y los tiempos de servicios son exponenciales. Conteste las preguntas siguientes: a. Cuál es la probabilidad que el cajero esté ocioso? b. Cuál es el número promedio de automóviles que están en la cola del cajero? (se considera que un automóvil que está siendo atendido no está en la cola esperando) c. Cuál es la cantidad promedio de tiempo que un cliente pasa en el estacionamiento del banco, (incluyendo el tiempo de servicio)? d. Cuántos clientes atenderá en promedio el cajero por hora? λ= 10 clientes/hora (media de llegada de los clientes) = 1/6 clientes/

5 µ= 1 clientes/4 (media de servicio de los clientes)=1/4 cliente/minuto a) Por tanto ρ = λ = 1/6 = 2 = 66.67% factor de utilización del sistema. Es decir que el μ 1/4 3 sistema permanece ocioso el 33.33%. b) Cuál es el número promedio de automóviles que están en la cola del cajero? L q = λ μ(μ λ) = 1/6 1/4( ) = 4 3 = Puede haber 2 autos en la cola. c) Cuál es la cantidad promedio de tiempo que un cliente pasa en el estacionamiento del banco (incluyendo el tiempo de servicio)? Nos preguntan por el tiempo promedio que el cliente pasa en el sistema. W s. W S = 1 μ λ = 1 1 = = 12 pasa el cliente en el sistema /6 1/12 d) Cuántos clientes atenderá en promedio el cajero por hora? Si el cajero siempre estuviera ocupado, atendería un promedio de μ=15 clientes por hora. Según la solución encontrada en el inciso a (1/4*60=15), el cajero está ocupado 2/3 del tiempo. Por tanto dentro de cada hora, el cajero atenderá un promedio de (2/3)(15)= 10 clientes. Esto es ρ*µ= 2/3 * 15 = 10 clientes.

PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales)

PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/1: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) PROBLEMAS RESUELTOS DE TEORÍA DE COLAS. (M/M/: Un servidor con llegadas de Poisson y tiempos de servicio Exponenciales) Prof.: MSc. Julio Rito Vargas A.. Suponga que en una estación con un solo servidor

Más detalles

V Unidad: Teoría de Colas (Líneas de espera) de Espera: Teoría de Colas

V Unidad: Teoría de Colas (Líneas de espera) de Espera: Teoría de Colas UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-NORTE INVESTIGACIÓN DE OPERACIONES II INGENIERIA INDUSTRIAL E INGENIERIA DE SISTEMAS V Unidad: Teoría de Colas (Líneas de espera) de Espera: Teoría de Colas Maestro

Más detalles

Teoría a de Colas o Filas de Espera. M. En C. Eduardo Bustos Farías

Teoría a de Colas o Filas de Espera. M. En C. Eduardo Bustos Farías Teoría a de Colas o Filas de Espera M. En C. Eduardo Bustos Farías as Introducción Una línea de espera es la resultante de un sistema cuando la demanda por un bien o servicio supera la capacidad que puede

Más detalles

Introducción a la Investigación de Operaciones Facultad de Ingeniería - Universidad de la República Oriental del Uruguay

Introducción a la Investigación de Operaciones Facultad de Ingeniería - Universidad de la República Oriental del Uruguay Introducción a la Investigación de Operaciones Facultad de Ingeniería - Universidad de la República Oriental del Uruguay Procesos Estocásticos de Tiempo Contínuo Práctico Ejercicio 1 Sean X e Y variables

Más detalles

DISEÑO DEL SOFTWARE TRAFFIC ANALYZER. Analyzer. En este capítulo se reporta el desarrollo que se llevó a cabo para realizar el software

DISEÑO DEL SOFTWARE TRAFFIC ANALYZER. Analyzer. En este capítulo se reporta el desarrollo que se llevó a cabo para realizar el software 3 Diseño del Software Traffic Analyzer En este capítulo se reporta el desarrollo que se llevó a cabo para realizar el software que analiza el tráfico en redes de telefonía y computadoras, denominado Traffic

Más detalles

TEORIA DE COLAS, FENOMENOS DE ESPERA

TEORIA DE COLAS, FENOMENOS DE ESPERA Universidad del Bío-Bío Facultad de Ingeniería Depto. Ingeniería Industrial Investigación de Operaciones II: TEORIA DE COLAS, FENOMENOS DE ESPERA Integrantes: Pedro Chávez Cristian Guajardo Victor Pino

Más detalles

Teoría de Colas o Fenómenos de Espera

Teoría de Colas o Fenómenos de Espera Teoría de Colas o Fenómenos de Espera Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2011 Introducción 2 Introducción............................................................

Más detalles

El aeropuerto se puede modelar como un sistema de colas M/G/1 con distribución uniforme de tiempo de servicio E[S] = 60 seg y σ 2 S = 48 seg 2.

El aeropuerto se puede modelar como un sistema de colas M/G/1 con distribución uniforme de tiempo de servicio E[S] = 60 seg y σ 2 S = 48 seg 2. ESTUDIO DE OPERACIONES URBANAS MATERIAL REUNIDO POR JAMES S. KANG OTOÑO 2001 Soluciones trabajo 4 3/10/2001 1. Problema 4.12 LO (Pinker, 1994; Kang, 2001) El aeropuerto se puede modelar como un sistema

Más detalles

Análisis de Decisiones II

Análisis de Decisiones II Tema 14 Distribución de llegadas Poisson, distribución de servicio Exponencial, varios servidores, servicio PEPS, población y cola infinita Objetivo de aprendizaje del tema Al finalizar el tema serás capaz

Más detalles

DIRECCIÓN DE OPERACIONES Y TOMA DE DECISIONES INGENIERÍA INDUSTRIAL CICLO DE PROFESIONALIZACIÓN

DIRECCIÓN DE OPERACIONES Y TOMA DE DECISIONES INGENIERÍA INDUSTRIAL CICLO DE PROFESIONALIZACIÓN TEORIA DE COLAS: Líneas de Espera Claro Ana Milena, Cardona Luz Dary, Ruiz Lina María, Gómez Juan Fernando, Estudiantes Ingeniería Industrial Universidad Católica de Oriente. Mayo 21 de 2011. Resumen:

Más detalles

Teoría de Líneas de Espera

Teoría de Líneas de Espera Teoría de Colas Teoría de Líneas de Espera COLAS: Líneas de espera que utiliza modelos matemáticos que describen sistemas de líneas particulares o Sistemas de Colas. Modelos presentan las siguientes características:

Más detalles

Solución Algorítmica de Problemas Proyecto - Unidad #2 Metro de Curicó

Solución Algorítmica de Problemas Proyecto - Unidad #2 Metro de Curicó Solución Algorítmica de Problemas Proyecto - Unidad #2 Metro de Curicó Fecha de Entregable 1: 7 de octubre de 2013-12 horas Fecha de Entregable 2 y 3: Lunes 21 de octubre de 2013-12 horas Fecha de Entregable

Más detalles

BLOQUE V Estadística y probabilidad

BLOQUE V Estadística y probabilidad Pág. de Observa estas dos distribuciones bidimensionales: I II Asigna a cada una un coeficiente de correlación tomándolo de entre los siguientes valores: 0,; 0,; 0,; 0,; 0,2; 0,2; ; Responde razonadamente

Más detalles

T.1 CONVERGENCIA Y TEOREMAS LÍMITE

T.1 CONVERGENCIA Y TEOREMAS LÍMITE T.1 CONVERGENCIA Y TEOREMAS LÍMITE 1. CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIA CONVERGENCIA CASI-SEGURA CONVERGENCIA EN PROBABILIDAD CONVERGENCIA EN MEDIA CUADRÁTICA CONVERGENCIA EN LEY ( O DISTRIBUCIÓN)

Más detalles

TEORIA DE COLAS SIMULACIÓN DE SISTEMAS

TEORIA DE COLAS SIMULACIÓN DE SISTEMAS SIMULACIÓN DE SISTEMAS UNIVERSIDAD ALAS PERUANAS FILIAL- ICA Ing. Las LINEAS DE ESPERA, FILAS DE ESPERA o COLAS, son realidades cotidianas: Personas esperando para una caja en un banco, Estudiantes esperando

Más detalles

Unidad V: Líneas de Espera

Unidad V: Líneas de Espera Unidad V: Líneas de Espera 5.1 Definiciones, características y suposiciones El problema es determinar que capacidad o tasa de servicio proporciona el balance correcto. Esto no es sencillo, ya que el cliente

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

Ejercicios de Teoría de Colas

Ejercicios de Teoría de Colas Ejercicios de Teoría de Colas Investigación Operativa Ingeniería Informática, UC3M Curso 08/09 1. Demuestra que en una cola M/M/1 se tiene: L = ρ Solución. L = = = = = ρ np n nρ n (1 ρ) nρ n n=1 ρ n ρ

Más detalles

2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K

2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K CONTENIDOS 1. Introducción a las colas poissonianas. 2. Modelo de colas poissoniano con un servidor M/M/1 3. Modelo con un servidor y capacidad finita M/M/1/K 4. Modelo con varios servidores M/M/c. Fórmula

Más detalles

SISTEMA CON UN SERVIDOR

SISTEMA CON UN SERVIDOR TALLER 6 : Problemas de Líneas de Espera. 1.SISTEMA CON UN SERVIDOR. Una compañía estatal tiene un numero de estaciones para el pesado de camiones a lo largo de una gran autopista, para verificar que el

Más detalles

EJEMPLOS DE TEORÍA DE COLAS Resolución con Win-QSB

EJEMPLOS DE TEORÍA DE COLAS Resolución con Win-QSB EJEMPLOS DE TEORÍA DE COLAS Resolución con Win-QSB PROBLEMA 1. El Banco Nacional de Occidente piensa abrir una ventanilla de servicio en automóvil para servicio a los clientes. La gerencia estima que los

Más detalles

Relación de Problemas. Modelos de Probabilidad

Relación de Problemas. Modelos de Probabilidad Relación de Problemas. Modelos de Probabilidad 1. Sabemos que en una ciudad, de cada 50000 personas, 1500 están viendo un cierto programa de TV. Cuál es la probabilidad de que de 100 personas elegidas

Más detalles

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación.

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación. PROBLEMAS 5.1. El famoso juego 7-11, requiere que el jugador lance dos dados una v. más veces hasta tomar la decisión de que se gana o se pierde el juego. El juego se gana si en el primer lanzamiento los

Más detalles

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar

Más detalles

Práctica 3 Distribuciones de probabilidad

Práctica 3 Distribuciones de probabilidad Práctica 3 Distribuciones de probabilidad Contenido 1 Objetivos 1 2 Distribuciones de variables aleatorias 1 3 Gráficas de funciones de distribución, densidad y probabilidad 6 4 Bibliografía 10 1 Objetivos

Más detalles

Análisis de Decisiones II. Conceptos básicos de Teoría de Colas. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Conceptos básicos de Teoría de Colas. Objetivo de aprendizaje del tema Tema 11 Conceptos básicos de Teoría de Colas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar en qué consiste la Teoría de Colas. D.R. Universidad TecMilenio 1 Introducción

Más detalles

PEOBLEMAS RESUELTO DE CADENAS DE MARKOV

PEOBLEMAS RESUELTO DE CADENAS DE MARKOV PROBLEMAS RESUELTOS DE CADENAS DE MARKOV TEMA: CADENAS DE MARKOV Prof.: MSc. Julio Rito Vargas Avilés I. El departamento de estudios de mercado de una fábrica estima que el 20% de la gente que compra un

Más detalles

Ambas componentes del sistema tienen costos asociados que deben de considerarse.

Ambas componentes del sistema tienen costos asociados que deben de considerarse. 1. Introducción. En este trabajo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas de espera particulares

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

PROBLEMAS RESUELTOS DE TRANSPORTES.

PROBLEMAS RESUELTOS DE TRANSPORTES. PROBLEMAS RESUELTOS DE TRANSPORTES. Prof.: MSc. Julio Rito Vargas Avilés Inv. Operaciones I Ejemplo 1 (Modelo de transporte estándar - equiulibrado) MG Auto Company tiene plantas en Los Ángeles, Detroit

Más detalles

DETERMINACIÓN DE LAS CONDICIONES DE ESTADO ESTABLE CADENAS DE MARKOV ABSORVENTES TEORIA DE COLAS O LINEAS DE ESPERA

DETERMINACIÓN DE LAS CONDICIONES DE ESTADO ESTABLE CADENAS DE MARKOV ABSORVENTES TEORIA DE COLAS O LINEAS DE ESPERA INVESTIGACIÓN DE OPERACIONES II CADENAS DE MARKOV CADENAS DE MARKOV ERGODICAS CADENA REGULAR DETERMINACIÓN DE LAS CONDICIONES DE ESTADO ESTABLE MÉTODO ANALÍTICO CADENAS DE MARKOV ABSORVENTES TEORIA DE

Más detalles

FUNDAMENTOS DEL ANÁLISIS DE WEIBULL Por Robert B. Abernethy, FL, USA

FUNDAMENTOS DEL ANÁLISIS DE WEIBULL Por Robert B. Abernethy, FL, USA FUNDAMENTOS DEL ANÁLISIS DE WEIBULL Por Robert B. Abernethy, FL, USA El análisis de Weibull es la técnica mayormente elegida para estimar una probabilidad, basada en datos medidos o asumidos. La distribución

Más detalles

Resolución de problemas. Temas: VOR e ILS

Resolución de problemas. Temas: VOR e ILS Resolución de problemas. Temas: VOR e ILS Autor: Mario E. Casado García 3er Curso ITT ST Índice 1. Problema tema 5: VOR......3 2. Problema tema 7: ILS.....7 3. Referencias..12 2 1. Problema tema 5: VOR

Más detalles

MATEMÀTIQUES 4ESO 14/15 NOM I COGNOMS. AUTOEVALUACIÓN INECUACIONES Y P.L tutor: SEK-CATALUNYA SISTEMA EDUCATIU SEK.

MATEMÀTIQUES 4ESO 14/15 NOM I COGNOMS. AUTOEVALUACIÓN INECUACIONES Y P.L tutor: SEK-CATALUNYA SISTEMA EDUCATIU SEK. MATEMÀTIQUES 4ESO 14/1 NOM I COGNOMS SEK-CATALUNYA COL LEGI INTERNACIONAL SISTEMA EDUCATIU SEK Aula INTEL LIGENT AUTOEVALUACIÓN INECUACIONES Y PROGRAMACIÓN LINEAL. Ámbito Científico Técnico Curso: 4ESO

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 2: PROBABILIDADES Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Describir el espacio muestral

Más detalles

UNIDAD 4. Producción: proceso por el cual los insumos se combinan, se transforman y se convierten en productos.

UNIDAD 4. Producción: proceso por el cual los insumos se combinan, se transforman y se convierten en productos. UNIDAD 4 Dra. Elena Alfonso Producción: proceso por el cual los insumos se combinan, se transforman y se convierten en productos. La relación entre la cantidad de factores productivos requerida y la cantidad

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará

Más detalles

Explicación de la tarea 3 Felipe Guerra

Explicación de la tarea 3 Felipe Guerra Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA Pensemos en los tres siguientes ejemplos: Hacemos una encuesta entre los clientes de una tienda para preguntarles su opinión sobre cambios generales que pretendemos hacer en diversas

Más detalles

Redes de Comunicaciones

Redes de Comunicaciones Redes de Comunicaciones Ejercicios Tema 3. Teletráfico. Dimensionado de Sistemas Ramón Agüero Calvo Departamento de Ingeniería de Comunicaciones Este tema se publica bajo Licencia: Crea:ve Commons BY-

Más detalles

LA TECNOLOGÍA COMO HERRAMIENTA DE BANCARIZACIÓN ING. FERNANDO PEÑA PRESIDENTE EJECUTIVO DE BANRURAL

LA TECNOLOGÍA COMO HERRAMIENTA DE BANCARIZACIÓN ING. FERNANDO PEÑA PRESIDENTE EJECUTIVO DE BANRURAL LA TECNOLOGÍA COMO HERRAMIENTA DE BANCARIZACIÓN ING. FERNANDO PEÑA PRESIDENTE EJECUTIVO DE BANRURAL EL RETO GUATEMALA ES UN PAÍS PEQUEÑO CON UNA POBLACIÓN APROXIMADA DE 11.2 MILLONES DE PERSONAS 60% INDÍGENAS

Más detalles

GUÍA RÁPIDA DE PUNTO DE VENTA. SoftRestaurant 2012 SISTEMA DE ADMINISTRACIÓN DE BARES Y RESTAURANTES SOFTRESTAURANT. Versión 8.0

GUÍA RÁPIDA DE PUNTO DE VENTA. SoftRestaurant 2012 SISTEMA DE ADMINISTRACIÓN DE BARES Y RESTAURANTES SOFTRESTAURANT. Versión 8.0 GUÍA RÁPIDA DE PUNTO DE VENTA SoftRestaurant 2012 SISTEMA DE ADMINISTRACIÓN DE BARES Y RESTAURANTES SOFTRESTAURANT Versión 8.0 National Soft de México Guía rápida para punto de venta En este documento

Más detalles

MACROECONOMÍA II Licenciatura en Administración y Dirección de Empresas Marzo 2004

MACROECONOMÍA II Licenciatura en Administración y Dirección de Empresas Marzo 2004 MACROECONOMÍA II Licenciatura en Administración y Dirección de Empresas Marzo 2004 EL TIO DE CAMBIO REAL El tipo de cambio nominal expresa el precio de una moneda en términos de otra. or ejemplo, el tipo

Más detalles

IN4703 Gestión de Operaciones I Auxiliar 6: Inventarios

IN4703 Gestión de Operaciones I Auxiliar 6: Inventarios Profesores: Andrés Weintraub, Fabián Medel, Rodrigo Wolf Auxiliares: Juan Neme, Matías Siebert, Paulina Briceño, Rodrigo Arriagada IN4703 Gestión de Operaciones I Auxiliar 6: Inventarios Modelos: 1.- Demanda

Más detalles

Se mezclan las tarjetas de azar y se coloca el mazo boca abajo en la casilla correspondiente.

Se mezclan las tarjetas de azar y se coloca el mazo boca abajo en la casilla correspondiente. millatoner games 2006 Juego de ciclismo para 3 a 6 jugadores Elementos del juego 1 tablero de juego (en 4 paneles) 42 fichas de ciclistas de seis colores 1 ficha de ciclista con el maillot arcoiris, que

Más detalles

Documentación del Terminal

Documentación del Terminal Documentación del Terminal 1. Descripción El Programa de Preventa-Autoventa FacturaPlus está diseñado para su utilización en PDAs incluyendo en este paquete además una aplicación para PC con la que gestionar

Más detalles

LECTURA 7.1. SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México

LECTURA 7.1. SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México LECTURA 7.1 SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Hipoteca de tasa fija

Más detalles

Líneas de espera. Introducción.

Líneas de espera. Introducción. Líneas de espera. Introducción. En este capítulo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas

Más detalles

Antes de construir tu base de datos es conveniente saber que tipos de datos vas a almacenar y como distribuirlos.

Antes de construir tu base de datos es conveniente saber que tipos de datos vas a almacenar y como distribuirlos. Microsoft Access es un sistema de gestión de bases de datos para uso personal o de pequeñas organizaciones. En pocas palabras, sirve para manipular información. Antes de construir tu base de datos es conveniente

Más detalles

LEER Y ESCRIBIR ARCHIVOS O FICHEROS EN C. FOPEN, FCLOSE, MODOS DE ACCESO READ, WRITE Y APPEND (CU00536F)

LEER Y ESCRIBIR ARCHIVOS O FICHEROS EN C. FOPEN, FCLOSE, MODOS DE ACCESO READ, WRITE Y APPEND (CU00536F) APRENDERAPROGRAMAR.COM LEER Y ESCRIBIR ARCHIVOS O FICHEROS EN C. FOPEN, FCLOSE, MODOS DE ACCESO READ, WRITE Y APPEND (CU00536F) Sección: Cursos Categoría: Curso básico de programación en lenguaje C desde

Más detalles

np {N q = n N q > 0} = (1 ρ) n=1 = (1 ρ) nρ n 1 = 1 (3.34) P {T q t T q > 0} = P {T q t T q > 0} P {T q

np {N q = n N q > 0} = (1 ρ) n=1 = (1 ρ) nρ n 1 = 1 (3.34) P {T q t T q > 0} = P {T q t T q > 0} P {T q 52 CAPÍTULO 3. SISTEMAS DE ESPERA Luego: P {N q = n N q > 0} = P n+1 2 = (1 ) n 1, n = 1, 2, (3.33) Nótesequelaprobabilidadqueexistan N probabilidadgeométricaconparámetro n 1,locualesigualaladistribuciónprobabilidad

Más detalles

Fundamentos de los Sistemas Operativos (GII) Examen Final 15 de Junio de 2012 - SEGUNDA PARTE - SOLUCIONES

Fundamentos de los Sistemas Operativos (GII) Examen Final 15 de Junio de 2012 - SEGUNDA PARTE - SOLUCIONES Calificación 1 Fundamentos de los Sistemas Operativos (GII) Examen Final 15 de Junio de 2012 - SEGUNDA PARTE - 2 3 Nombre SOLUCIONES Grupo Dispone de una hora y media para completar el examen 1 (6.5 puntos)

Más detalles

El Problema del Transporte

El Problema del Transporte ASIGNATURA PROGRAMACIÓN LINEAL El Problema del Transporte Maestro Ing. Julio Rito Vargas Avilés Octubre 2014 1 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para

Más detalles

Adivinanza o logaritmos?

Adivinanza o logaritmos? Nivel:.º Medio Sector: Matemática Unidad temática: Álgebra y funciones Actualmente un alumno está cursando el Cuarto Año Medio. Tiempo atrás estuvo de cumpleaños y recibió de regalo diferentes cantidades

Más detalles

1.3 Números racionales

1.3 Números racionales 1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples

Más detalles

Matemáticas Grado 6 Números negativos

Matemáticas Grado 6 Números negativos Matemáticas Grado 6 Números negativos Estimado padre o tutor legal: Actualmente su hijo/a está aprendiendo a usar números negativos. Ésta es su oportunidad para ayudarle a practicar esta importante habilidad.

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 2 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. La dureza Rockwell de un metal

Más detalles

Trabajo y energía: ejercicios resueltos

Trabajo y energía: ejercicios resueltos Trabajo y energía: ejercicios resueltos 1) Un hombre debe mover 15 metros una caja de 20Kg realizando una fuerza de 40N. Calcula el trabajo que realiza si: a) Empuja la caja desde atrás. b) Tira de la

Más detalles

2. ABRIR UN NUEVO DOCUMENTO DE TRABAJO

2. ABRIR UN NUEVO DOCUMENTO DE TRABAJO 2. ABRIR UN NUEVO DOCUMENTO DE TRABAJO 18 Introducción Hasta ahora hemos visto como abrir una imagen para tratarla en Photoshop CS3, y a guardarla en cualquiera de los estados en los que se encuentre en

Más detalles

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Especificación algebraica ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Un tipo abstracto de datos se determina por las operaciones asociadas, incluyendo constantes que se consideran como operaciones sin

Más detalles

LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( )

LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( ) LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( ) La distribución Normal tiene numerosas aplicaciones en el campo de la Probabilidad y la Estadística,

Más detalles

Tema 5: Teoría de colas. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga

Tema 5: Teoría de colas. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Tema 5: Teoría de colas Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Sumario Conceptos básicos Cola M M Cola M M c Cola M M k Redes de colas Redes de

Más detalles

GENERAR DOCUMENTOS HTML USANDO LENGUAJE PHP. EJERCICIO RESUELTO EJEMPLO SENCILLO. (CU00733B)

GENERAR DOCUMENTOS HTML USANDO LENGUAJE PHP. EJERCICIO RESUELTO EJEMPLO SENCILLO. (CU00733B) APRENDERAPROGRAMAR.COM GENERAR DOCUMENTOS HTML USANDO LENGUAJE PHP. EJERCICIO RESUELTO EJEMPLO SENCILLO. (CU00733B) Sección: Cursos Categoría: Tutorial básico del programador web: HTML desde cero Fecha

Más detalles

2 Teoría de colas o líneas de espera

2 Teoría de colas o líneas de espera 2 Teoría de colas o líneas de espera El tráfico en redes se puede modelar con la ayuda de la teoría de colas, es por ello ue es importante estudiarlas y comprenderlas. Existen varias definiciones sobre

Más detalles

1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10

1 Introducción... 2. 2 Distribución exponencial... 2. 3 Distribución Weibull... 6. 4 Distribuciones Gamma y k-erlang... 10 Asignatura: Ingeniería Industrial Índice de Contenidos 1 Introducción... 2 2 Distribución exponencial... 2 3 Distribución Weibull... 6 4 Distribuciones Gamma y k-erlang... 10 5 Distribución log-normal...

Más detalles

En cualquier caso, tampoco es demasiado importante el significado de la "B", si es que lo tiene, lo interesante realmente es el algoritmo.

En cualquier caso, tampoco es demasiado importante el significado de la B, si es que lo tiene, lo interesante realmente es el algoritmo. Arboles-B Características Los árboles-b son árboles de búsqueda. La "B" probablemente se debe a que el algoritmo fue desarrollado por "Rudolf Bayer" y "Eduard M. McCreight", que trabajan para la empresa

Más detalles

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 TEMA 11: MÉTODOS DINÁMICOS DE SELECCIÓN DE INVERSIONES ESQUEMA DEL TEMA: 11.1. Valor actualizado neto. 11.2. Tasa interna

Más detalles

GUÍA de creación de pdf

GUÍA de creación de pdf PDF (Portable Document Format, Formato de Documento Portátil) es un formato de documento, desarrollado por Adobe Systems, que se ha convertido en un estándar en las artes gráficas. Las principales ventajas

Más detalles

Institución Educativa Inem Felipe Pérez de Pereira 2012 Estrategia taller. AREA: Sistemas de información Taller 1 2 3 4 Previsto 1 2 3 4 5 6 7 8 9 10

Institución Educativa Inem Felipe Pérez de Pereira 2012 Estrategia taller. AREA: Sistemas de información Taller 1 2 3 4 Previsto 1 2 3 4 5 6 7 8 9 10 Grado 10º Tiempo (semanas) GUÍA DE FUNDAMENTACIÓN Institución Educativa AREA: Sistemas de información Taller 1 2 3 4 Previsto 1 2 3 4 5 6 7 8 9 10 Fecha Real 1 2 3 4 5 6 7 8 9 10 Área/proyecto: es y Mantenimiento

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o 2 Profesor: Hugo S. Salinas. Primer Semestre 20. El gerente

Más detalles

Microeconomía Intermedia

Microeconomía Intermedia Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. Tema 03 La elección óptima del consumidor

Más detalles

Análisis de Decisiones II. Tema 15 Solución de problemas de líneas de espera mediante WinQSB. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Tema 15 Solución de problemas de líneas de espera mediante WinQSB. Objetivo de aprendizaje del tema Tema 15 Solución de problemas de líneas de espera mediante WinQSB Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Identificar las características y funcionalidades que ofrece WinQSB

Más detalles

EL MÉTODO DE LA BISECCIÓN

EL MÉTODO DE LA BISECCIÓN EL MÉTODO DE LA BISECCIÓN Teorema de Bolzano Sea f : [a, b] IR IR una función continua en [a, b] tal que f(a) f(b) < 0, es decir, que tiene distinto signo en a y en b. Entonces, existe c (a, b) tal que

Más detalles

Adaptación del producto

Adaptación del producto Adaptación del producto 3 Muchas empresas comienzan su proceso de internacionalización buscando mercados extranjeros para sus productos o servicios existentes. La decisión de entrada se basa en informaciones

Más detalles

INVERSIONES Y MÉTODOS DE VALORACIÓN V.A.N. Y T.I.R.

INVERSIONES Y MÉTODOS DE VALORACIÓN V.A.N. Y T.I.R. INVERSIONES Y MÉTODOS DE VALORACIÓN V.A.N. Y T.I.R. Introducción Al decidir realizar una inversión en la empresa se debe contar con la mayor cantidad de información para poder hacerlo minimizando los riesgos.

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de

Más detalles

Contabilidad Orientada a los Negocios

Contabilidad Orientada a los Negocios Tema 5 Introducción Como todos sabemos, al pagar por alguna cosa, cualquiera que esta sea, que jamás haya sido utilizada, se debe desembolsar una cantidad de dinero, esto es porque, al igual que todas

Más detalles

Tema 12: Gestión de existencias. Elvira Carmona Rubio Operaciones administrativas de compraventa

Tema 12: Gestión de existencias. Elvira Carmona Rubio Operaciones administrativas de compraventa Tema 12: Gestión de existencias Elvira Carmona Rubio Operaciones administrativas de compraventa En esta unidad aprenderemos a: Representar gráficamente los stocks y su evolución en el tiempo. Calcular

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

Modelos Matemáticos de Poblaciones

Modelos Matemáticos de Poblaciones Capítulo 1 Modelos Matemáticos de Poblaciones 1.1. Introducción Actualmente, en algunos campos de la Ciencia los esfuerzos van dirigidos, dentro de ciertas limitaciones, a conocer el desarrollo de algunos

Más detalles

Para aquellos que tengan conocimientos de Access es lo más parecido a una consulta de referencias cruzadas, pero con más interactividad.

Para aquellos que tengan conocimientos de Access es lo más parecido a una consulta de referencias cruzadas, pero con más interactividad. Las tablas dinámicas Crear una tabla dinámica Una tabla dinámica consiste en el resumen de un conjunto de datos, atendiendo a varios criterios de agrupación, representado como una tabla de doble entrada

Más detalles

Problemas + PÁGINA 37

Problemas + PÁGINA 37 PÁGINA 37 Pág. Problemas + 6 Un grupo de amigos ha ido a comer a una pizzería y han elegido tres tipos de pizza, A, B y C. Cada uno ha tomado /2 de A, /3 de B y /4 de C; han pedido en total 7 pizzas y,

Más detalles

Metodología CAPÍTULO 3. Alcance

Metodología CAPÍTULO 3. Alcance Metodología CAPÍTULO 3 Alcance La investigación se enfocará a los requisitos necesarios para listar en la Bolsa Mexicana de Valores y las principales bolsas de los países pertenecientes al G8. También

Más detalles

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

En este PDF encontrará los siguientes temas que debe estudiar para la clase:

En este PDF encontrará los siguientes temas que debe estudiar para la clase: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Función de oferta, superávit de consumidores y productores, análisis marginal: Costo marginal, Ingreso marginal, Utilidad marginal

Más detalles

Máquinas virtuales (VMWare, Virtual PC, Sandbox. Qué son y para qué sirven. (DV00402A)

Máquinas virtuales (VMWare, Virtual PC, Sandbox. Qué son y para qué sirven. (DV00402A) aprenderaprogramar.com Máquinas virtuales (VMWare, Virtual PC, Sandbox. Qué son y para qué sirven. (DV00402A) Sección: Divulgación Categoría: Herramientas informáticas Fecha revisión: 2029 Autor: Walter

Más detalles

Por qué es importante la planificación?

Por qué es importante la planificación? Por qué es importante la planificación? La planificación ayuda a los empresarios a mejorar las probabilidades de que la empresa logre sus objetivos. Así como también a identificar problemas claves, oportunidades

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 5: VARIABLES ALEATORIAS Y DISTRIBUCIONES CONTINUAS Profesor: Hugo S. Salinas. Segundo Semestre

Más detalles

El plan de Marketing de una tienda virtual

El plan de Marketing de una tienda virtual El plan de Marketing de una tienda virtual Manuel Vizuete Gómez www.marketingycomercio.com Un buen Plan de Marketing tiene en torno a seis partes: Descripción de la Situación actual, Análisis de esa Situación,

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

290 SOBRE LAS FORMAS DE SEGUNDO GRADO.

290 SOBRE LAS FORMAS DE SEGUNDO GRADO. 290 SOBRE LAS FORMAS DE SEGUNDO GRADO. Sobre el númerodeclasesambiguas. 257. Entre todas las clases en un orden dado con determinante dado, las clases ambiguas especialmente demandan un tratamiento mayor,

Más detalles

Macroeconomía Intermedia

Macroeconomía Intermedia Macroeconomía Intermedia Colección de 240 preguntas tipo test, resueltas por Eduardo Morera Cid, Economista Colegiado. Cada sesión constará de una batería de 20 preguntas tipo test y las respuestas a las

Más detalles

Overall Equipment Effectiveness

Overall Equipment Effectiveness Overall Equipment Effectiveness Cuando hablamos de mejora continua en un área de producción o de manufactura el OEE es el indicador clave para medir la eficiencia de una maquina o una línea de trabajo.

Más detalles

Metros y centímetros. Vamos a medir cosas!

Metros y centímetros. Vamos a medir cosas! Metros y centímetros Vamos a medir cosas! Objetos y cosas que sirven para medir: Autor: Eduard CONNOLLY http://pedagogoterapeuta.blogspot.com/ 2 Fíjate en estos dos objetos: Los dos sirven para medir Autor:

Más detalles

Problemas de Variable Compleja. Soluciones. Hoja 4

Problemas de Variable Compleja. Soluciones. Hoja 4 Problemas de Variable Compleja. Soluciones. Hoja 4 Ejercicio.- Sobre la circunferencia C(0, /r) se verifica que Sea N N tal que para todo n N max{ e ( +! min{ e : = /r} = e /r. +... + n n! } : = r }

Más detalles

EJERCICIOS RESUMEN. Aplicación: INFERENCIA ESTADÍSTICA. Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013

EJERCICIOS RESUMEN. Aplicación: INFERENCIA ESTADÍSTICA. Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013 Aplicación: INFERENCIA ESTADÍSTICA EJERCICIOS RESUMEN Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013 Página1 DESCRIP Ejercicio 1 Los siguientes son los números de cambios

Más detalles

Microeconomía Intermedia

Microeconomía Intermedia Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. Tema 06 Elasticidad de la demanda, el excedente

Más detalles

UNIDAD 1. EL PLANETA TIERRA.

UNIDAD 1. EL PLANETA TIERRA. UNIDAD 1. EL PLANETA TIERRA. Vivimos en un planeta llamado Tierra. Nuestro planeta está constituido por una parte sólida (tierra), formada por los continentes; por una parte líquida (agua), formada por

Más detalles

7.- PRUEBA DE HIPOTESIS

7.- PRUEBA DE HIPOTESIS 7.- PRUEBA DE HIPOTEI 7.1. INTRODUCCIÓN La estadística inferencial es el proceso de usar la información de una muestra para describir el estado de una población. in embargo es frecuente que usemos la información

Más detalles
Sitemap